
ONTHE SOLUTIONOF LINEAR DIFFERENTIAL EQUA-
TIONS OF SUCCESSIVEAPPRONIMATIONS.

Bv PRESTONA. LAMBERT.

(Read April 30, 191 1.)

The object of this paper is to apply to the solution of linear differ-

ential equations, both ordinary and partial, the method of expansion

into series used in the solution of algebraic equations in the papers

read by the author before the Philosophical Society in April, 1903,

and in April, 1908.

Let the given differential equation be

f dy d'y (t\v\
o.

The method of solution consists of the followirg steps

:

(a) Break up the left-hand member of the dift'erential equation

into two parts.

and

/ dy d\v d"y\

-^\''''^''dv'dP^ ''dr^)

j\^^y^ dx • dx-' '"' dx")'

such that the first part equated to zero can be integrated by some

known method, and multiply the second part by a parameter 5", inde-

pendent of .r and 3'. Replace the given equation by

, . rf dy d^y d"y\ (
dy d'y d"y\

(6) Assume that

(3) 3' = Vo + y\S + r.^-^' + yS-^ + r A* + • •
•

makes equation (2) an identity.

274



191 1.] LINEAR DIFFERENTIAL EQUATIONS. 275

(c) In this identit}- arranged according to the ascending powers

of S equate to zero the coefficients of the different powers of S.

(d) Solve the dift'erential equations thus obtained in regular order

for Vo.Vi,3'o,3'3, V4. •••

(e) Substitute these values in
(

3 ) and make 5" unity. The result-

ing value of _v, if it contains a finite number of terms or if it is a

uniformly convergent infinite series, is a solution of the given dif-

ferential equation.^

The method of solution of linear dift'erential equations as here

outlined does not seem to occur in mathematical literature except as

developed by the author.

The method will be exemplified by applying it to two dift'erential

equations, important in mathematical physics —Bessel's equation, a

second order ordinary dift'erential equation, and Fourier's equation

for the flow of heat, a second order partial dift'erential equation.

Bessel's equation is

X'

Replace Bessel's equation by

and assume that

y = y\> + y\S + y,5-^' + v..^' + y,S' + • • •

makes the latter equation an identity.

When arranged in ascending powers of 5^ this identity is

o^j'o ' ,^ ^ , .^_y^
5^'

-f • • • = o.

dx^ ,

"^ dx' "^ dx~

'^O ^1 ^2
dx dx dx

^ This method gives a formal solution of non-linear differential equations,

but up to the present time the author has been unable to test the resulting

series for convergency.
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276 LAMBERT—ON THE SOLUTION OF [April 2^.

Equating to zero the coefficients of the powers of 5" in this identity,

there result the following differential equations for the determina-

tion of yo,yi,y2>yz> ••••

The equation in v,, is a homogeneous linear differential equation

and its solution is

Substituting this value of y,, the equation for determining y^

becomes

ax'- ax ^

This equation becomes exact when multiplied by .t'"""\ The

resulting equation integrated gives a linear equation of the first order,

the solution of which is

-^'1 ^ 2\n^) "^ 2\n- i)

Substituting this value of a'i in the equation for determining y^

and proceeding in the same manner

V = 1

2*. 2 !(/^ -I- i)(« + 2) ^ 2'- 2 !(;/— i){n —2)

In like manner

_ Ax''+^ 5;t'-"+«

J', = 2^7! (;r+ i)(« + 2){n + 3)
"^ 2''.3!(^/- i)(«- 2)(^z-3)'

and so on.



191 1.] LINEAR DIFFERENTIAL EQUATIONS. 277

Substituting these values of 3V,. Vi, jv. Ts, • • • in

y = Vo + y\S + yS^ + V3^^ + v,^* + • •
•

and making 5" unity,

A

+ 2) 2*-T!

I x^
^

V I x"^ I x^

(;z+ i){n + 2){n+ 3) 2^3!
+

^ I ;tr

+ .5.ir-" I + -2 +
2 T ,.4

;/ —I 2^ (« — I )[n —2) 2* • 2

!

I x^
+ (;,_ i)(;,_2)(;/-3)^^y!-^ ]

When n is not an integer the terms of both series in this value

of y continue indefinitely according to the law of formation which

inspection makes evident, both series are uniformly convergent ex-

cept when .r=:0, and both series are solutions of the given dififer-

ential equation.

When n is a negative integer the law of formation of the terms

of the first series changes after the (?;)th term and when n is a

positive integer the law of formation of the terms of the second

series changes after the (;Oth term. The second case will be con-

sidered.

W^hen ;/ is a positive integer the {n)xh. term of the second series is

Bx^-^
^'"-' ^ 2-'"-^'(;/ _!)!(;/_ I)!

•

Substituting this value of 3'»^i in the differential equation for

determining 3',,,

ax^ ax - " - " '

and solving for y„ by the method used in solvir.g for 3'i,3'2-3'3, •••,

A= ^^-jiiijr^.y
['' log '^-

- 27J

•

In determining 3'„xi.3'»,-o.3'».3, ••, the second term in the bracket
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gives the terms of the first series in the vaUie of y multipHed by a

constant. This new series is combined with the first series in the

value of y.

The first term in the bracket gives

^'n+l 2^"~ ^«!(;/- I)! [~ 2Xn + i) + ¥{;r+~T) \
^ "^ «T~i )\

'

_ - B r ,1-"+-' log X
J'n+2 = 2^'^'n\{n- I)! [ 2 ! 2\n + i)(;7T^)

\
^

"*"
2

"*"
;/ + I ;74- 2 /J2 ! 2\;i + i)(;/ + 2)

The solution of Bessel's differential equation when // is a positive

integer is therefore

J' = ^,f" I , + 7 ry-

4

4- 2) 2*.2l

I x'

{11 + i)(;/ + 2)(« + 3) 2''.3!^

r I A'2 I x^

y + -^-^;^j -2 +
(;^ _ i)(;^ _ 2) 2^^721

i>lr" log x r I ,1-^ I
.1'*

~
2^"-Vr!(;/ -^lyi L^

~ n + I 2-
"*"

(7; + i)(;rT2) 2*.2
!

]

](„+ !)(;,+ 2)(;/ + 3) 2^.3!

~ 2^"-'n\{n- i)! [ ;7T~i V ^

"^ ^'^ I / 2"

-
(« + i)(n^2)y "^

2
"^ «> I

"^ «+ 2 j 2*. 2 !

"^
J

This is also the solution of the ditferential equation when 11 is a

negative integer.
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Fourier's partial differential equation for the linear flow of

heat is

= IC
dt

Replace Fourier's equation by

dx

dV _ d^V

and assume that

makes the latter equation an identity.

When arranged in ascending powers of S this identity is

^0
a/

+
dt

5 +
dt

K - K ^2

S^ + ... = 0.

Equating to zero the coefiicient of the powers of 5" in this identity,

there result the following partial differential equations for the deter-

mination of Fq, F^, Vo, Fg, • • •,

= o,
^0
dt

dj-^'dx' = ''^

These partial differential equations solved in regular order give

V, = c^{x), l\ = 4>%r){Kt), F, = c/>-(-r)^\

f^3 = </>

('^)-Yr'
••••

Substituting these values of F^, F^, F„, Fg, ... in the assumed

value of F and finally making 5" unity, there results

{A) F= 4>{x) + r{-r){Kt) + <t>'\x) ^' + r\^) ^' + • •
.

,
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which is a solution of Fourier's equation for all values of <f>(x) for

which V either contains a finite number of terms or is an infinite

series uniformly convergent both in .r and in t.

The following table shows several values of <^(.v) and the cor-

responding solutions of Fourier's equation.

I (i) <f>(x) = A,

(2) <f>{x) = A.V,

(3) <^W = ^-^^

(4) (f){x) = A sin {nx),

(5) <^('t') = ^ cos {71X),

(6) 4>{x) = Ae^%

(7) <^{x) = Ae-\

(8) 4>{x) = Ae"' sin {?ix).

V= A,

V= Ax,

F= A{x^ + 2 A?),

]^ = Ae-''-'^' sin {nx).

V=Ae- {nx),

V= Ae-"'+"'''',

V= Ae""" sin (//.r -(- 211^ Kt).

It will be noticed that in these solutions ^(.r) is the value of V
when t=o, that is F^</)(.r) is the initial heat distribution.

It will also be noticed that in all these results x may be replaced

by X 4" 0" This statement is true of the results in the several fol-

lowing tables.

If Fourier's differential equation is replaced by

Ct OX'

and the assumption made that

makes this equation an identity, this identity arranged in ascending

powers of 5" is

K
dx^

+ K
dx^

dV'^
dt

S + K ^^2dx'

dt

_dV,
dt

S' + •' =0.

Equating to zero the coefficients of the powers of 5" in this

identity,
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Solving these partial differential equations in regular order for

Fq, fj, Vo, v., , substituting these values in the assumed expres-

sion for V, and finally making 6^ unity, the result

F= <^(/>' + ^ <f>'(t)
'^' + ^, <}>'V)

f^+'--
(B)

is a solution of Fourier's differential equation for all values of

<^(^) and 6(t) for which V either contains a finite number of terms

or is an infinite series uniformly convergent both for x and for t.

Solutions of the differential equation when (j>(t) =o correspond-

ing to several values of ^(0 are as follows

—

II </>(/) = O,

(i) d{i)=A, V=A,

(2) d{f) = Af, ^=^{' + ^)'

(3) ^(/) = At\ F= A (/^ +
J.'

+ ^, ) ,

2 \{2Kt) \\{2Kif

3-y^
1'^ t\{2Ktf "y

(5) e(t) = ArK V=-^^,

3

2 ! 2A7 ' 4 ! {2KtY

3 '^'

]

^,)eit) = At-K V=At-^[.--^-^^ +

6 ! {2Kty

3-5 «^*

4! (2A'/)2

3-5-7 __^'

6! {2Ktf
"^

]
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sin (;//) -I- cos nt —j-

--^sin(;//) ^-,
J,

(9) ^W= A log /, F= ^ l^log / -f ^ ^^
- ^~- -^

2 X^ 2 • 3 -tr^ ~|

"^ i^3 6T ~ KU' sT ^
J

'

(10) d{i) = At', V= Ac-^i + I -2T + f^ fl + • • •]•

It will be noticed that in these solutions V =^0{t) is the heat dis-

tribution when ^ = o.

Solutions of the differential equation when 0(t) =0 correspond-

ing to several values of (j)(t) are as follows:

III 0{t) = o,

(i) <l>{t) = A, V=Ax,

(2) (/>(/) = ^/, F=^[-r/+^y^],

[2X^t 2X^ ~\

[,3 -5

*• + zh f T - ?hi' fy

+ 2'K^'J\ J
'

(5) <^(0 = At-K V= At~^ [r - ^^ ^ +^ -^

3-5 x^ 1
~ 2^¥ 71

+•••]'

f— 3 2 ^T) ~l

(6) <l>{t) = ^."'. F= Ae^" |^.r -H ^ ^', + ^,, ^', + • • •

J
.

r « • S-1-'

(7) <^[t) = /i sin (;//), V= A\ sin (;//).r -|- ^ cos (///)
^

,

-^2Sin(«/)^,
J,
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(8) <i>{t) = ^ log /, V=A ^v log / + -^
3

I x'
+ Y 7 ! JK-t^ 5 !
^ K^i

It will be noticed that in this set of solutions [' = when .r^o.

Let u^^f^(xj), U2 = f2{y>^)> ^h = fz{^>^) represent solutions

of the three one-dimensional Fourier's equations,

dV_ d-V (^V _ d^-V dV d'V

~dt^^d7^' a7^ ^' "a7~ a^

respectively. It is readily proved that

y=zn^u.-. and l^ -^ u-^\i.,u,

are solutions respectively of the two-dimensional Fourier's equation

dV (d-V d-V\

and the three-dimensional Fourier's equation

dV (d'V d^V d''V\

~df ^ ^\~dx^ ~^ ~dy '^ ~dz' )'

This shows how solutions of the two- and three-dimensional

Fourier's equations can be obtained from the solutions of the one-

dimensional equation.

For example, from the one-dimensional solutions

Ae' 4Kt

V= -j^-r- and F= Ae''''-'" sin (nx)

the three-dimensional solutions

Ae~^*

(2) F= /^^-(«-+P=+Y-)*''< sin {ax) sin {Qy) sin (7^),

respectively, are obtained.
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If the solution of the three-dimensional Fourier's equation

dF „( d-V d'V d^F/ a-F d'F d'F\
dt

is a function of ;• and / only, so that

F = f{r, t) , where r = (.r- -f y- -\- c- ) *,

the transformation of the given equation from rectangular to polar

coordinates shows that the solution is

r

where u is a solution of the Fourier's equation

du d'^ti

It follows that solutions of the three-dimensional equation of the

form F = f(r, t) are obtained by replacing .r by r in any solution

of the one-dimensional equation

aF _ dht

and dividing the result by r.

In this manner are obtained the solutions

V(i) F=4.

(2) F=^—--

(3) F = —e"' sin (;/;- -|- 2irKt).

It is interesting to compare the solutions of Fourier's partial dif-

ferential equation obtained in this paper with the solutions tabulated

by Sir William Thomson in the mathematcal appendix of the article

on "Heat" in the "Encyclopaedia Britannica," ninth edition.

Sir William Thomson obtains his results bv summation, that is
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by integration, from the solution IV (i) above. All his results

occur directly in the above tables or are combinations of two of these

solutions. It is evident that there are several misprints in the results

as printed in the " Britannica."

Of course there are many solutions of Fourier's equation which

must be built up from elementary solutions, however found, by

means of Fourier series, or which must be obtained by the methods

of harmonic analysis.

The solution III (5) above is the series used by Sir William

Thomson in his solution of the problem of the secular cooling of the

earth.^

An interesting result in pure mathematics is obtained as follows

:

Sir William Thomson shows that for a continued point source of

heat, if the rate is an arbitrary function of the time, f(t), the solu-

tion of Fourier's equation when K= i is given by the definite

integral

V = CdxAt-x)
Jo bTT'-X"-

The second part of the general solution (B) above shows that

is also the solution of Fourier's equation for the same conditions.

It follows that

/»« fix
I r I r f^ "I

i ''-/(' - -) 8^1 = 4^ [7 /W +^'« TT. + /"(')
4

!- + •

J

is a general formula for computing the definite integral.

Lehigh University,

Bethlehem, Pa.

* " Mathematical and Physical Papers," Vol. III.


